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SHORT TIMES AND SHORT DISTANCES IN
NUCLEAR AND PARTICLE PHYSICS - A
PEDAGOGICAL REVIEW

Geoffrey B. West
Theoretical Division
Los Alamos National Laborato.v
Los Alamos, NM 57545

ABSTRACT

The formalism relevant to deep inelastic processes in both non-relativistic and
relativistic systems is reviewed with an emphasis on scaling and its violations. In
the former case we show how a systematic expansion in 1/¢? (¢ being the mo-
mentum transfer) can be derived which delineates the incoherent scattering from
bound state and potendal corrections. We demonstrate Fow this exact many-body
non-relativistic formalism corresponds to the light- cone operator product expan-
sion in guantum field theory. As examples, scaling in liquids, nuclei and nucleons
is discussed with emphasis on the EMC effect, shadowing and the relationship to
the photo absorpticn limit.

[ INTRODUCTION

An eclementary argument based on the uncertainty principle clearly demonstrates
that high momentum transfer processes are sensitive to physics on the light cone:

just simply taking ¢> -+ oo probes the region z?

~+ 0. Since QCD is asymp-
totically free (i.e. its effective coupling constant becomes vanishingly small when
¢*  » 00), things simplify considerably in this regime: perturbation theory, at least
nalvely, .s a justifiable approximation. Indeed, it was precisely this property that
led to the establishment of QCD as thg theory of the strong interactions. In par-
ticular, as will be revicwed below, its prediction of logarithmic violations of exict
scaling in deep inelastic lepton scattering was a striking success. The arguments,
which technically relied on the behaviour of products of currents near the light cone,
justified not only the use of the parton model but the identification of partons with
the quark and gluon tundamental degrees of freedom. It was natural to try to extend

such arguments to other high momentum processes, such as form factors, lepton pair



production, wide-angle scattering, and heavy quark decays. However, although the
light cone certainly plays an important (and possibly even a dominant) role in all of
these processes ihe application of perturbation theory alone to describe them is gea-
erally impossible to justify. The point is that in deep inelastic scatrering it is possible
to make a clean separaton of the infrared (i.e. the non-perturbative) from the ultra-
violet(the perturbative). In almost all other processes such a separation is pener-
ally not possible even in the extreme vltra- violet limit. Typically non-perturbative
physics creeps in. Indeed one of the major challenges in QCD physics is to under-
stand how to graft non-perturbative infrared or bound state etfects onto perturbative
ones controlled by light-cone physics.

Particle and nuclear physics are beginning *o come together in this endeavour
although their emphases have in the past been quite differcnt. The emphasis in par-
ticle physics was originally to try to substantiate QCD as the theory of the strong
interactions!'!. Having done so (at least to the satisfaction of most physicists) the
emphasis shifted to using it as a probe of new physics (i.c. new interactions beyond
the standard model or new particles such as the top quark). This meant understand-
ing phenomena such as jet structure, multiparticle production, decay processes and
so on!?!, This has been accomplished almost entirely within the context of pertur-
bation theory (and, by implication, physics on the light cone). Phenomenologically,
this has proven to be successful in spite of the fact that non-perturbative effects
ought to play some role.

Ironically, even though all particle physicists may believe that QCD is the theory,
nevertheless, it is worth remembering that the self-interaction of the gluons (and,
subsequently the presumed existence of a glueball state) hes yet to be experimentally
substantiated! Non-perturbative physics, i.e. physics away from the light cone, has
by and large become the province of lattice QUD though important analytic efforts
have been made. The major effort thus far has been in trying to understand the
hadronic spectra.

Until relatively recently nuclear physics worked almost exclusively within the
context of meson and nucleon degrees of freedom. However as energies have in-
creased and the realization that QCD is here to stay has crystallized, the cmiphasis
has begun to shift 1o the question of the role of quarks and gluons inside the nu-
cleus. Here the fundamental questions revolve around how the description of low
energy phenomena described in temms of mesons and nucleons evolves into quarks
and gluons as the energy scale increases. A central question for »xample is the ex-
istence and experimental signal of a quark-gluon plasma. [n coming to grips with
seme of the serious problems raised by going to higher energies considzrable work
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has focused on phenomenological descriptions in terms of relativistic nucleons and
effective relativistic fiell theories of mesons and nucleons (QHD). Whether this is
a more useful, economical or physical way of dealing with some of the problems
rather than trying to come to grips directly with the role of QCD in nuclei remains
an open question at this time!*!. In the last few years a central battleground for the
advocates of these rather ditferent approaches has been the EMC effect!¥. This is
the experimental observation that the deep inelastic structure functions do not sim-
ply scale with A as one changes the target. All sides have adequate explanations
of the effect, which is not too surpnising since both descriptions are to some degree
valid and the experiments, after all, only measure gross features.

The rest of this talk will in fact, concentrate on the theoretical description of
the sciling phenomena observed in classic deep inelastic scattering. As intimated
by the title, the emphasis will be pedagogical, and, as such, will for the most part,
be a review of well-known theoretical techniques and results. 1 shall, however,
give the discussion in terms of two rather different contexts: (a) many-body non-
relativistic potential theory and (b) fully relativistic quantum field theory. The latter
encompasses QCD whereas the former applies to nucleons bound in a nucleus by
inter-nucleon potentials. At the end I shail brizfly discuss applications to the EMC
etfect and some questions of shadowing.

II Non-Relativistic Systemsl 3

We begin by considering spinless non-relativistic scattering from a target composed
of Z scattering centers such as is the case of a nucleus or of a macroscopic lig-
uid. The formalism that [ shall review applies in fact almost precisely to the case of
thermal neutron scattering from liquids. In general, the process to be discussed is 1l-
lustrated in Fig. 1: the scattered probe particle (an electron, say) is detected without
regard to the fate of the target tinal states. In terms of the energy loss {v) and mo-
mentum transfer (¢) it is convement to introduce the structure function (appropriate
to Coulomb scattering).

, (dPo/dQdE)
Wiuv, g* Pe— 1)
(v.g7) ((t()/(ﬂ”nuu. (

(el [odS2) guea 18 the classical Rutherford scattening cross-section for structureless
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Figure 1: Genenl graph illustrating inclusive scattering from an arbitrary target.

particles. From the Fermi golden rule W is given by

W(r,¢*) =Y | < ¥ Y. Q¥ > |28t Ef — E, + v) (2)
f/

where Q, is the charge of the i'th constituent whose position is r, Wiz is the initial
(final) state of the target. Using the Heisenberg equations of motion together with the
completeness of the set of final states f (i.c. the conservation of probability) one can
express (2) as a ground state expectation value

Win,g') = [7 e < v T QuQet e ME0 vy > R
W)

o &

The price paid for eliminating the sum over final states is the need for knowledge of
the time developinent of r,(t). This, of course, is govermed by the Hainiltonian of



the system whose general structure is taken to be
H=_E%.+v(m. ------ 12) (4

where 4 is the mass of the constituents. Although we will not need to do this in
what follows, it is usually assumed that the potential v can be expressed as a sum
of 2-body potentials.

V(Il"'Iz)=EU(E.—Z,) (S

1<)

Indeed this usually leads to a 2nd quantized many-body description in terms of
creation-destruction operators a:

a0

: dt
W) = [ e < Wl o), p0) %0 > (6)

— 00 e

The density operator is given by

Pq Z Y. Gy g0k (N
X

Its time development is controlled by the Hamiltonian, eq. (4) which, in this for-
malism, can be expressed as

2

1 N
= E ;;u;uk + s Z"(Dp;l’l (%)

k vk

v( k) 15 just the Fourier transform of the 2-body potential v(r) defined through eq.
(5). This field theoretic description of eqs. (2) and (3) allows one to think of W as the
imaginary part of the corresponding (virtual) photon, forward Compton scattering
amplitude as illustrated in Fig. 2. The question we wish to address is what is the
behaviour of W when ¢ becomes very large?

Although much fonmal and phenomenological work has been based on this 2nd
quantized representation it is more convenient for our purposes to stay with the



W(v.q*%)=Im

Figure 2: The optical theorem relating W to the imaginary part of the vital forward
Compton scattering amplitude.

equivalent 1st quantized form, eq. (3). From a judicious use of operator identities
coupied with the equations of inotuon

dp.
Zi=ilHp)= -0V, 12) = R (9)

[pi 1s the momentum operator for the i'th constituent] one can derive the following
¢Xact representation

2 oo '
W ‘.,qz) a (W Z Q.Q,e"(!'—!')T/ ﬁ.e'fluv—m—f,(I-l/l')r..(l’)dl'lI\Po)
el -o0 LT
(10)
Here we have defined the z-direction as that of ¢ and introduced the dimension-
less vanable
Quv - ¢t

This expression has a lot of nice properties. not least of which is that it delineates
three separate aspects of the physics:



( 1) The degree of coherence in the target: this is represented by the term

z z
Z Q.Q,e“(!“i;) = EQ‘Z + EQ|Q;C'4'(!‘_!’). (12)
‘l)=l =1 |1}

The point is that the incoherent contribution coming from terms with 1 =
contains no phase factor and so is not damped when g — oo. On the other
hand the terms with 1+ ¥ j which represent the coherent contribution do
contain a phase factor and so fall rapidly with increasing g2 just like a form
factor; [see Fig. 3].

( ii) Quasielastic scattering: if the constituents were free and at rest then the
probe scatters elastically from them and so ¢*> = 2 uv requiringy = 0. Thus
deviations from y = 0 are a measure of the bound state of the target. This can
be seen explicitly in (10) by setting F = O and performing the integration
over t. The term ( 4y — p;,) in the exponcnt chows that y is a measure of the
internal momentum of the constituents inside the target - as will be shown
explicitly below.

( iii) Dynamical corrections: these are completely represented by Fi(t') in the
exponent. To evaluate them is of course, very complicated. However in the
deep inelastic limit, the expression simplifies considerably as we shall now
demonstrate.

Introduce 8 = qt (and ' = qt') then the incoherent part of eq. (10) can be
re-expressed as

z2 oo . v 2l
W (v, ¢*) = (‘i‘oIEQfT/ ;%e"’“"f-"”-"’“'%’"- w)  (13)
=] i

Apart from suppressing the coherent contribution which vanishes rapidly with ¢2,
this expression is exact. Now, if we take ¢ — oo at fixed y, it is clear that the term
in the exponent containing F. also eventually vanishes and we are left with

z .
F(y.q%) = qW(p,q?) —< ¥| ¥ Q¥8(y — ‘—;-“i)lvo > (14)
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Figure 3: Generic expansion of F.



i.e. the incoherent quasielastic scattering. In an explicit momentum space represen-
tation this reads

) ) 4>k, ks 5 \
F(y,q7) %EQi /(h), ---(2“)3|<‘l’o|&1---&z>| 6Ckiz — py) (15)

or, if | f( k) |? is a single-particle momentum distribution defined by

lr d’k ,
|f(k|‘)|2‘:-:i. (—2'7r—)5]‘|<‘*'0|ﬁ1"'b""£2>l“ (16)

where the integration symbol means integrate over the momenta of all the con-
stituents except the i’th, then (in the symmetric case), (15) reduces to

d*k,
(2)3

Fuo,@ ~ 2 [ S35 [T dklfho k)P —ny) (D)

Thus for large ¢  F(y,q>) = ¢W(v,q?) scales to a function of y which
measures the longitudinal momentum distripution of constituents inside the
target.

It is clear from this discussion that the approach to y— scaling is governed by
correlations as well as explicit dynamics. The expression given in eq. (10) or (13)
allows for a systematic expansion ir. powers of 1 /q. [Actually, with some reasonable
approximations, one can translate tais into an expansion in power of e!/?]. Thus the
scaling phenomenon simply reflecs the fact that the target can be well described by
Z scattering centers. In this sense, it is the correction and the approach to scaling
that contain the really interesting physics. On the other hand, in the high energy
case, where it was not known that hadrons were definitely comrposed of quarks,
the scaling phenomena (discussed below) was the clearest evidence for the ultimate
establishment of the quark model.

Typical scaling curves for electron scattering from nuclear targets (5 GeVrange)
and for neutron scattering from liquids ( (S KeVrange) are shown in Fig. 4. The
theoretical discussion above leads to many interesting results which are in agree-
ment with these uata some of which are the following:



( 1) The dynamical corrections (from F;) dominate the correlations at large q
with the result that scaling should be approached from above.

(i) The leading correction requires 9.F / aqzl.,-o ~ 0; i.e. there is virtually
no correction near the maximumaty = 0

( iii) For a symmetric system F(0,¢%) = (u/2k) ~ 2 — 3.

( iv) Scaling results whether F is a confining force or not. Thus even for po-
tentials V(r) ~ r" for r — oo, the system behaves as if the constituents
were free.

Approach to Y—Scaling
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Figure 4: (a) y-scaling curve for thermal neutron scattering from liquid helium for
various values of ¢2(in A-2).

Lastly, [ would like to discuss the role of sum rules since these play a crucial role

when we tum to the relativistic analysis. Returning to the representation (3) it is
clear that

0o 2
[(qz)E/ dvW(v,q*) = E(WOIQ‘Q’ew.(L—q)I%)

iy=l

10
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Figure 4: (b} Similar curve for electron scattering from iron nuclei with ¢? in
(GeV/c)?.
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Z z

= 1 Q1+ ¥ QiQ,(Wole =W |wg)  (18)

=1 =1

where in the last line I have separated the terms into the coherent and incoherent
contributions (as in Fig. 3). Nctice that for identical particles with Q, = 1.

2
I(qz)_.{ Z when ¢ — o0 (19)

Z?when¢g? =0

showing how the two extreme regimes pick out the incoherent from the coherent. In
general, the sum rule has integrated out the explicit dependence on dynamics so
that the approach ‘o scaling for (¢?) is completely governed by correlations
alone. In terms of the scaling variable we can write

/_:dy}'(y.qz)NZQf (20)

[Notice that this is in agreement with eqs. (14) - (17) sincc the state |¥,) is normal-
ized to unity]).
It is straightforward to derive other sum rules; for example

/::dyyzf(y. q’)w():Q?)g-(%) (21)

where T = $%/2 4 is the kinetic energy operator. Thus thi:. second moment of F
measures the mean kinetic eneryy of the constituents. More generally one can acrive
an infinite sequence of sum rules which relate moments of /= to matrix elements of
operators:

/_m dyy* " F(y, ¢) = (R (¥l Y amp™™ ™ (I—) Ivo)  (22)

ma() ne

Although this is not particulirly useful in non-relativistic systems where one can
work directly with the original expression such as eq. (10), its ana. e in reletivis-
tic field theory turns out to be the key to progress. ‘This is because the expression in

12



(22) factorizes into a probe-dependent target-independent piece (i.e. ¥ Q?) and a
target-dependent matrix element which is probe-independent. This effectively sep-
arates the ultrzviolet part of the problem from the infra-red bound state aspects. In
the relativistic case, to which we immediately turn, this will bring the behavior of
currents on the light cone.

III RELATIVISTIC FIELD THEORY (QCD)!®!

Let us first discuss some preliminaries. The relativistically covariant generalization
of the structure function W of eq. (2) is given by:

Wi(p,@) = Y| < Nliulp > P69 (p+ ¢ - pw) (23)

where the bar implies an average over target spin and 7, is the electromagnetic cur-
rent; (for neutrino scattering this becomes the appropriate weak current). Unlike (2)
this incorporates trans:tions due to both longitudinal and transverse virtual pbotons.
W,. can te decomposed into scalar amplitudes W, ( q*,v).

Wu(p,q) = -Wi(¢*, 1) gu + Wa(@*,0)pupu + -+ - (24)

where v = p.q/M, } being the mass of the target. In the Lab frame where p =
0,v = ¢', e energy lost by the projectile. As before, a use of unitarity (i.e. com-
pleteness of the final set of states | N >) allows one to express W/, as a ground state
expectation value, analogous to eq. (3):

Wu(p,q) = /d‘xe"’ < pll Ju(z), 7, (DM 1lp > (25)

With quarks as the fundamental degrees of freedom which carry charge, the elec-
tromagnetic current is 7, = ), 7,Q,7,¢: where the sum runs over all quark-types.
MNote also that W, = I'm T,,,, where T,,, is the corresponding Compton amplitude
obtained from (25) by replacing the commutator by a time ordered product.
Iet us now exaumine more explicitly why the light-cone plays a crucial rdle when
¢* -+ 00. To do so introduce light-cone variables
q: Z Qo t qs

and zp, ¢ 39 b2 (26)

13



with the z-direction defined along ¢, [ie. ¢ = Q ]. Thus @ = qq, 1 =
z,2_ — 122 and .z = 1/2(q.z_ + q_z.). Now, in the large q? limit

g+ ~2v[1 - q2/4u2 + -]
and qg— =5 ¢*/2u[1 = 3/4 ¢*/v* + -]

where £ = —¢° /2.

2u[1 —2¥/¢* + -]

~z[1 -7 /g8 + ]

The limit g2 — oo, with z fixed defines the Bjorken limit' 5. In this limit ¢* ~
2y — oo. By virtue of the properties of Fourier transforms this drives z_ ~
0(2/q.) ~ 0(1/v) in the representation (26). Similarly the major contribution to
the z. integration comes from the region z, ~ 0(2/q-) ~ 0(2/z). Clearly, then,
the region that dominates the integrand in eq. (25) in the Bjorken limit is given by
1’ ~ —1% <0, i.c. whenever z, is space-like or null. On the other hand, causality
requires that the commutator in (25) vanishes outside of the (forward) light-cone,
i.e. the integrand can only t= non-zero when z,, is time-like cr null (z* > 0). Thus,
in the Bjorken limit, all of the contribution to the integral can only comc from xz,
null, i.e. from the light-cone itself 2> =~ 0. We therefore need to know the behav-
iour of products of currents near z2 ~ 0. To get an idea of what this involves it is
useful to consider a tov model:

The toy model consists of treating the fundamental fields ¢(z) (the quarks) as
scalars and defining a fictitious scalar current j(z) = ¢2(z) which is a bilinear in
$(x)— just as the real current j,(z) is bilinear in the quark fields q(z). We then
manipulate the fields as if they were free. In that case the standard Wick expansion
leads to

T(¢*(2)$*(0)]
~242(z,m?) + diap(z, mH) () P(0) + $* () $* (0127)

T () j(0)]

where

dk etk

A ’) =
r(z,m") (2m)4k? - m? +1e

(28)

is the Feynman propagator, m being the mass associated with ¢(x). Diagramati-
cally, the Coinpton amplitude, of which W is the imaginary part, is shown in fig.
5. T'he first term contains no operutor and gives rise to a disconnected graph which
does not contribute to the physical deep inelastic scattering. The other two terms
give contributions which are precisely analogous to the result of the non-relativistic

14
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Figure 5: Analog expansion to fig. 3 of F
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analysis, and which break up into coherent and incoherent pieccs as in fig. 3. In
fact, the analogy can be taken even further when we recall that when 2~ 0

1 1
AF(Ilmz)N_z" B T
47 1o — 1€

+0(m*1?) (29)

so that the second term in (27) dominates the third when z2 /2 0. Thus the leading
behaviour for W is given by

W(q* v) ~ Im/d"J:E“"Ap(I.m’)(pl¢(z)¢(0) ). (30)

Suppose now that we introduce a momentum distribution function

FRF = [ d'ze™=(plo(2)$(0) Ip) (31)

then eq. (30) can be re-expressed as

d* k

(2m)4

W(g* v) = FORYPEI(k+ @)% —m?10(ko + qo). (32)

Now, in the Bjorken limit (k + )2 — m? ~ 2u(k. — z) which immediately
leads to the scaling result

vW (g%, v) F(z,¢*)

1 k )
(;"*")':U( k)|*6(k_ — ) (33)

This is clearly the analogue of the non-relativistic many-body formula derived
in eq. (17) and justifies identifying | f( k) |? of eq. (31) as a momentum disiribution
tunction. It shows that W scales to a function of  which in the Lab frame measures
the k _ ("the longitudinal light-cone momentum™) distribution of constituents in the
target. The situation in this toy moddel is therefore just like the non relauvistic case.

‘The situation in the real world is more corplicated; fields cannot be treated as if
they were free. However, the generalization from the free to interncting case is ac-
tually quite straightforward. The crucial characteristic of the expansion (27) which

16



was based on treating ¢ as a free field is that it is in the form of c_ number singular
functions of £2 (such as Ag) multiplied by (composite) operators [e.g. ¢(z)¢(0)!.
Wilson suggested (and it was later proven valid) that this structure is maintained
even in the fully-interacting theory; so, for the scalar case, one would write:

TIH(2)j(0)] & Y Cm(z*)Om( ) (34)

where the C,.(z2) are functions like Ax( z*) which are singular near the light cone
and the On () are the complete set of all possible composite operators occuring in
the theory. Notice that the O, (x) are, like $(z)$(0) of the toy model, not local
operators (i.e. they depend on at least two different space-time points, z,and ) in
this case). Near the light-cone, however, the operators O,,( ) can be expanded in
2 Taylor series whose coefficients are local operators:

Om(T) =3 34, 2, 042 *™(0) ( 35)

Inserting this in (34) we obtain the operator product expansion:

TIF (D) j ()] = Y Cu(?)x,, - 1,0%.2™(0) ( 36)

mn

From the intuition gained in the toy model, where the operators (),,( ) were
interpreted as analogous 10 the wave-function of the non-relativistic theory the ex-
pansion (35) seems a little strange. For it is as if one were expanding a spatial
wave-function around the origin (z ~- 0) in a Taylor series expansion. However,
for the * jorken limit this is a naiural thing to do since knowledge of the most sin-
gular behaviour of the C(z?) is in principle sufficient to determine the large ¢*
behaviour of W,

From ordinary dimensional analysis one can deduce from (36) that the most sin-
gular CC,(x*) oceur for operators ()% #* which are bilinears in the fundamental
fields (i.e. quarks and gluons). These are the operators of lowest twist ( . its dimen-
sion - its spin). Higher twist operators are multilinear in the quark and gluon tields
and give rise to less singular (!,(r?) and therefore to corrections to the leading
large ¢ -behaviour.

Substituting this light-cone operaior product expansion (36) into the definttion
of the virtual Compton amplitude - of which the physical structure functions are the

17



imaginary parts - leads to an infinite sequence of sum rules:

! \ \
Mg, n E-/(; dz 2" F2(z,¢°) =~ c(g*, m) (p|Oalp) (n > 2) (A7

Here, the c(q>,n) are related to Fourier transforms of the C,,( z°); they are inde-
pendent of the target but probe (and therefore ¢*) dependent. The operators (', are
basically the invariant scalar components »f the O4 #"; their matrix elements are,
of course, target dependent, though independent ot the probe (and therefore ¢*). It
is clear that the operator product expansion has allowed one to separate the infrared
features of the problem (represented oy the matrix elements) from the ultra-violet
(represented by the c(g*, n)).

By this ruse the determination of ¢* -dependence is disentangled from the knotty
problems of dealing with the structure of the target - which, of course, is a non-
perturbative infrared problem. The leading ¢ behaviour of the moments is thereby
tied to the behaviour of the c(¢?,n) and therefore the the twist-2 quark and gluon
bilinear operators. Now, QCD is asymptotically free, which means that as ¢? in-
creases, the effective coupling decreases (g2 ~ 1/In (¢*/u®) ] allowing an ac-
curate perturbative estimatc for the c(q?,n). Technically, this is accomplished by
using the renormalization group which effectively sums graphs and leads to

cdqd,m ~lng*/u?) ™ (38)

where the 7, are r=lated to the anomalous dimersion of the (), and are all calculable
This behaviour has been briliiantly contirmed by experiment as s own in fig. 6 and
(because yne1 > 74 > (J) leads to a pattern of scale breaking illustrated in fig 7.

The target dependent piece, (p|()a|p). remains in general undetermined since it
requires a solution of the bound state problem. Thus the light-cone only determines
the ¢2-evolution of the structure functions - their shape and normalization are in-
frared properties. Remwkably, however, the normalization can in fact be, in somne
scnse, determined. The reason for this is that the lJowest moment (n = 2) corre-
sponds in eq. (40) to the 2-tensor ()*'#* which must contain the energy-momentum
tensor. ‘This is not only a conserved quantity (so that its anomalous dimension
v: = ()) but, furthermore, its matrix clement. at rest are known, being given by
the mass of the target. Thus the complete right-hand-side is known. One finds

I
M@g“, D) / Ih(r,q*)de
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Figure €: Structure function moments vs. ¢? showing agreement with predictions
from the light-cone expansion and asyn.ptotic freedom
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where f means flavour. This sum rule can be thought of as measuring the fraction
of momentum carried by the quarks. For SU(3) this reduces to

5N

1
2 IO ———————————
[) R(eodz~ ey

(40)

where N is the number of quark generations. Thus, for N = 4, this gives 5/42
whereas for N = 3, 5/34. The data are shown in fig. 8. These indicate that M (g2, 2)
is approachirg a constant which appears to be consistent with 3 generations. Note,
incidentally, that the operator O#'#1 contains another operator beyond the energy-
momentum tensor and that this is not conserved and so has a non-vanishing value
for its 2. This means that there are corrections to the sum rule, eq. ( 40), which
are of the form a(ln ¢?) ™. Remarkably, a can be shown to be positive so that
the approach to scaling must be from above which is in agreement with the data.
Further corrections are given by the higher twist operators containing more than just
two quark and gluon fields. These are down by O(1/¢?) and so are presumably not
of importance for high values of ¢2.

An Aside - Application to the EMC Effect

A remarkable property of the sum rule, eq.(40) beyond the fact that its right-
hand-side is independent of g (i.c. of the probe) is that it is also independent of the
target! Thus, if one introduces the difference

Fa(¢*,2)
A
[A denoting a nucleus and N the nucleon], then

A(¢t,3) = — Fn(¢*, 2 (41)

(Ca - Cn)

A
A M(¢"2) = [ A} D)dz s ]

(42)

In fact g}l moments of A vanish asymptotically so ultimately A itself must van-
ish, with increasing ¢?, albeit very slowly. Thus at very large ¢%, the EMC effect
must eventualiy disappear. Notice also, incidentally, that |A M (g2, 2)| must de-
crease monotically with g2 which is, in fact, violated when the original EMC data is
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compared to the later SLAC data! [7)Since that :ime!® the EMC points near z ~ O
which were the largest deviations of A from zero £ &~ O have been amended so that
the data is now consistent with this requirement on |A M ( q%,2) |-
Correlations, Higher Twist and Shadowing

We have seen that the operator product expansion on the light cone leads to sum
rules with the structure:

M(g%,2)

1
[) Fi(¢* 1)dx

<Q*> C |
(1+16/3Nf)+(lnq2)"= +O(E->+ ...... (43)

The first two terms represent the lowest twist contribution arising from quark and
gluon bilinears. These can be represented by graphs of the kind shown generically
in fig. 5. These incorporate the naive parton model, modulated with leading loga-
rithmic gluon radiati-= corrections which give rise to the second term in eq. (43).
The leading corrections to these asymptotic estimates come from higher twist terms:
the four-quark operator, as illustratec in fig. 5, gives rise to O(1/q?) corrections.
Notice that these leading graphs are identica: in structure 1o those that arose in the
1/q? expansion for the structure function in non-relativistic many-body theory.

Let us take this connection with the many-body result seriously - after all, the
basic physics is clearly the same. In that case, as one comes down to modest values
of ¢> (below a few GeV?) correlations in the system begin 1o dominate. Let us
therefore write

M(*,2) = Mrao(@*, D[ 1 — f(4P)] (49)

where Mrap (g2, 2) just includes the "soft-gluon" radiative corrections that we typ-
ically calculated from as_"mptotic freedom, i.e. the first two terms in eq. (43). This
is, of course, a slowly raging fur. -ion of 4. Writing €q.(44) in this form simply
factors out the QCD radiative corrections in much the same way one removes ra-
diative corrections in QED. What remains, i.e. f(g¢?). contains "dynamics"”. Now,
suppose we mimic the non-relativistic sum rule, eq. (i8), and identify f with cor-
relations in the target (i.e. loosely with (e'9(ti-1)))  then below the “correlation
length" (a few GeV), it becomes very rapidly varying. Of course for large ¢°, it
rapidly vanishes. A crude approximation for f is simply the square of the elastic
form factor of the target, G4(¢2):

e f(¢?) m Gh(gh) (45)
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Figure 9: Approach to scaling for the sum rule

This can be "justified” by noting that diagramatically (fig. 5) f is the overlap
of two triangles, each one approximately the clastic form factor. Thus, a crude
approximation would have

M(q*.2) ~ Mran(@%, (1 = G3(¢)] (46)

For the nucleon G(q?) is a remarkably smooth function, well approximated
by a dipole form:

1

(e — -
Gulq )“(1.—q1/M3')_1

(47)

where Mo ~ 0.7GeV. Thus the approach to the asymptotic regime governed by
the light cone should, for the nacleon, be smooth - as indezd it is, as can readily be
seen in fig. 9. Indeed this approach is iemarkably well fit by eq. (46) On the other
hand for systems such as nuclei and liquids which have spatial "edges” G (g¢?) is
oscillatory, reflecting diffraction. In that case the approach to asymptopia should be
oscillatory. For liquids this is indeed the case. Relevant data on nuclei are not yet
available.

We can ke this argument one step further, if we are willing to be bold: we can
suppose that f(¢%) dominates the approach to s:aling not just for the sum rule but
for the structure function itself: this suggests writing:

Fi(qt, z) m FfMP (2, 2001 — f(gH)] (48)
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where again FRAP (4%, z) contains only the "soft-gluon radiative corrections”. In
that case, it follows that

~ _ F(¢*2)
Fro) = 2 (49)

should (up to logarithms) scale down to very small values of ¢? (i.e. well below
a few GeV? and possibly even down to g2 = 0!!). A fit with this formula was
performed many years ago on carly data and is reproduced in fig. 10. It does indeed
show a remarkably good agreement.

Suppose we go even further and try to continue this formula down to ¢ = 0
(with v fixed). On the left- hand-side. z — 0 when g*> — 0. On the right-hand-side
we have

q*a,(v)

2
FZ(Irq ) - 4"2 p

(50)

where o,(v) is the total photo-absorption cross-section. If we therefore set =0
and v = oo in eq. (49) we obtain

~ 2
Fr(0) ~ ——'"g‘;;‘:)

~ 0.38 (51

which is in remarkably good agieement with experiment!
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Figure 10: F3(x,q%) vs. ¢ forfixed 2( = 1 /w') showing smoothness (as reflected
in fig. 6). The solid lines are [ 1 - 73,(¢%)].

26



References

[1] See, for example, H. D. Politzer, Phys. Rep. 14c¢, 130 (1974)

(2] See, for example, S. D. Ellis, "Lectures on Perturbative QCD, Jets and the
Standard Model"”, The Santa Fe TASI-1987 (Ed. R. Slansky and G. Westr),
World Scientific (Singapore, 1988), Vol. 1., page 174

[3] Many of these questions were discussed at this workshop and the reader is
referred to other papers in these proceedings

(4] For a review, see, for example, G. B. West "The EMC Effect: Asymptotic
['reedom with Nuclear Targets”, Intersections Between Particle and Nuclear
Physics (Ed. R. E. Mischke) American Institute of Physics (N. Y. 1984) p. 360

[S] G. B. West, Phys. Rep. 18¢, 264 (1975)

(6] For a good pedagogical introduction see, T. P. Cheng and L.-F. Li, "Gauge
Theory of Elementary Particle Physics" (Oxford University Press, N. Y. 1984)

(71 G. B. West, Phys. Rev. Letts. 54, 2576 (1985)

{8] R. Amold, this workshop.

27



